UMS Tuning :: Services :: Dyno Tuning
x
Services :: Dyno Tuning

UMS Tuning has both 2wd and 4wd vehicle capabilities and has handled everything from UTVs to 1200hp Supras. We are knowledgeable and experienced with using most of the major tuning software and hardware available on the market today.

Baselines

Baseline AWD $40
Baseline FWD/RWD $100

Fueling

Lead Fuel Tuning $40

General Tuning

Tuning per hour $140

Systems

AEM v1/v2 Forced Injection or ITBs $650
AEM v1/v2 Naturally Aspirated $600
AEM Infinity $700
AEM FIC $500
   
APEXi Power FC Forced Induction $550
APEXi Power FC Naturally Aspirated $500
APEXi NEO/SAFC/VAFC $250
   
Cobb (Ford, Mazda, Mitsubishi, Nissan GTR, Subaru, VW) CALL
   
Diablo Sport $550
   
ECUFlash (Mitsubishi Evolution/Subaru) $500
   
Hondata KPRO Forced Induction or ITBs $650
Hondata KPRO Naturally Aspirated $600
Hondata s300 Forced Induction or ITBs $550
Hondata s300 Naturally Aspirated $500
   
HP Tuners $500 + licensing
(only if required)
   
SCT (Chrystler and GM up to 2011, Ford Mustang up to 2008) $550
   
Uprev $500 + $300 license
(only if required)

 

Why UMS Tuning uses the DynaPack Chassis Dyno:

The Dynapack™ direct couples to the wheel hubs and applies a precisely controlled hydraulic load. This method of direct coupling plus its built-in strength means the Dynapack™ is always in control of the vehicle.

Controlling a powerful car on a roller dyno can sometimes be a daunting task. With Dynapack™ you have TOTAL CONTROL of the vehicle, with no wheel slip due to its direct coupled design. With that there is no inertia to mask the results, giving you greatly improved sensitivity, repeatability and significantly reduced time spent tuning and mapping!

With the power of the Dynapack™ literally at your fingertips, you have complete control over the test and the demands placed on the vehicle. Flexible data presentation and analysis is available direct from the Dynapack™ in seconds.

Dynapack™ chassis dynamometers are such a radical departure from the stereotypical roller dyno that it really is in a class of its own. Most of the previous assumptions made about chassis dynos (the roller type) simply do not apply to the Dynapack™ series.

The first and most obvious difference is the elimination of the tire to roller interface on a conventional roller dyno.

The Dynapack™ eliminates this variable by using a hub adapter that provides a direct coupling to our Power Absorption Units. There can be no tire slip, no rolling resistance, and no chance of the vehicle coming off of the dyno at high speeds. Notice that we call this a variable. Sometimes it may be a problem area, other times it may not. Tire temperature, pressure, traction, etc, are all variables that can change - not only from run to run, but during the run as well.

Throw an unknown variable like this into the equation and your data has now become subject to a potentially high margin of error. It is obviously better if these variables could be eliminated - which is exactly what we have done. There are other associated problems with the roller method as well. Take tie-down straps for example, most roller dyno's use ratcheting tie-down straps to attempt to hold the vehicle in position while being tested. If the straps are cinched down tightly, the tire has become loaded even further, in an unpredictable manner.

While this may be good for enhancing traction, it changes the rolling resistance of the tire - skewing the data further. Since these tie-down straps aren't perfect, the vehicle squirms around on the rollers - dramatically changing the tire drag during the run. If the vehicle is tested in two different sessions, the straps can't be set exactly the same way twice in a row. Again, the data will be inconsistent. We have heard of cases where the ratcheting tie-down straps were loosened by two clicks and the measured power increased by ten horsepower. What if the straps stretch - either from run to run, or during the run itself? Wouldn't it be great if all of these problems could disappear?
With a Dynapack™, they were never there in the first place.

Another major difference is the effect of inertia.

Street wheels and tires spinning at high RPM have a large amount of inertia. A large steel drum spinning at the same ground speed has much more inertia. What you end up with is a giant, heavy flywheel attached to your engine. The inertia is such that just trying to accelerate the mass of the roller is a substantial load for the engine. That is the principle that some roller dyno's (or ìinertia dyno's as they are also called) operate on. Accelerate a known mass to a measured speed over a given time and it can be calculated to equal a certain amount of power. There is nothing wrong with this theory, but like many theories, its application in the real world can be troublesome.

How do you think your measurements will be effected by being subjected to this large heavy flywheel phenomenon? Will small fluctuations be noticeable? In a word, no, the flywheel effect tends to take small rapid variations and smooth them right out - as energy that should be going into the dyno is being wasted trying to accelerate a large lump of steel. This is great if you want your power curve to look like a smooth pretty line, but it doesn't give you much insight into what is really occurring. What if you eliminated this flywheel effect?

The inertia of a Dynapack is practically zero.

This allows us to precisely measure and display tiny rapid pulses and oddities that you may not have seen before. Now you have a window into areas that no roller dyno will allow you to see. Another benefit of having virtually zero inertia is the ability to change the rate of acceleration at will. In many situations, you may want to accelerate the vehicle at a different rate to simulate a specific condition. With a few simple keystrokes, we allow you to make the vehicle accelerate very quickly, slowly, or anywhere in between. Because of our lack of inertia and total control of the engine speed, we give you choices that none of our competitors can even dream of - and as you know, choices are good!